本文目录一览

1,有什么东西可以把管道里的混凝土打碎

用超高压水力破拆机器人。
可乐,可乐可以清理,真的,
电镐,电钻,

有什么东西可以把管道里的混凝土打碎

2,混凝土破碎用什么方法

目前常见的混凝土破坏原理有如下三种:(1)碳化破坏。(2)氯盐。(3)冻融循环。其中,碳化破坏是由于酸性气体与水共同作用下,与碱性的混凝土发生中和反应,在混凝土表面生成盐类,使混凝土发生粉化脱落,从而劣化混凝土。另外,中和反应的发生会使混凝土的PH值不断降低。钢筋在碱性环境下会形成钝化保护层,也就是说,在碱性环境下的钢筋几乎是不会被锈蚀的;而当混凝土体系不断地趋于中性时,钢筋的锈蚀也会逐渐发生;当PH<7时,钢筋将会被迅速碎。而酸性气体与碱性物质发生中和反应,必须有水的存在才能进行。

混凝土破碎用什么方法

3,混凝土用什么方法破碎速度快

目前常见的混凝土破坏原理有如下三种:(1)碳化破坏。(2)氯盐侵蚀。(3)冻融循环。其中,碳化破坏是由于酸性气体与水共同作用下,与碱性的混凝土发生中和反应,在混凝土表面生成盐类,使混凝土发生粉化脱落,从而劣化混凝土。另外,中和反应的发生会使混凝土的PH值不断降低。钢筋在碱性环境下会形成钝化保护层,也就是说,在碱性环境下的钢筋几乎是不会被锈蚀的;而当混凝土体系不断地趋于中性时,钢筋的锈蚀也会逐渐发生;当PH<7时,钢筋将会被迅速锈蚀。而酸性气体与碱性物质发生中和反应,必须有水的存在才能进行。氯盐的存在,对于混凝土也是另一大威胁。在有氯离子存在的环境下,钢筋的锈蚀过程会被加剧,并且当这些有害物质通过液态水这一运输管道进入混凝土后,会与混凝土上的中的硅酸盐发生反应,使得混凝土内部发生体积膨胀,从而破坏混凝土。而冻融循环更是由于混凝土吸水后,在温度变化时发生体积膨胀或收缩,最终混凝土也会遭到破坏。以上这三类化学反应的发生,都需要有水的存在才能顺利进行,同时,有害物质也是通过水为运输通道进入混凝土。
付费内容限时免费查看回答采用德国进口的世界领先技术的混凝土钻切设备液压切割机进行无损静力切割,碟式切割及绳锯切割具有切口平直,整齐、安全、速度快,效率高,不会破坏原结构,噪音低、无粉尘、操作简便等特点。所有切割拆除范围见甲方提供的现场绘图尺寸和具体技术要求。根据结构稳定,施工安全及施工可行性等方面确定分步切割的顺序,切割过程中,可统筹安排,交叉施工,同时进行,加快施工进度。总施工流程:前期施工准备→安全防护→临时支撑→定位放线→切割吊装→转运→完工。提问这个方法没有用回答像刀切豆腐一样由中间打通一条槽,在用大锤沿槽边敲;如果是要打掉一整块楼板,那就在4周开4条槽,切断钢筋,一块楼板就切下来了。提问室内阁楼的,不能这样做回答首先对切割部位做好一系列的保护措施,按照设计图纸的要求,确认切割位置,并在楼板上使用墨线弹出需要切割的记号线。电动式切割机插上电源,沿着做好的记号线进行切割楼板就行了。提问一楼也是一块楼,板带地下室的回答什么意思更多7条
现在常见的混凝土破坏原理有三种:(1)碳化破坏(2)氯盐侵蚀(3)冻融循环碳化破坏是由于酸性气体与水共同作用下,与碱性的混凝土发生中和反应,在混凝土表面生成盐类,使混凝土发生粉化脱落,从而劣化混凝土。中和反应的发生会使混凝土的PH值不断降低。钢筋在碱性环境下会形成钝化保护层,也就是说,在碱性环境下的钢筋几乎是不会被锈蚀的。当混凝土体系不断地趋于中性时,钢筋的锈蚀也会逐渐发生。酸性气体与碱性物质发生中和反应,一定要有水的才能进行。氯盐对于混凝土也是一大威胁。在有氯离子存在的环境下,钢筋会加剧锈蚀过程,然而当这些有害物质通过液态水进入混凝土后,会与混凝土上的中的硅酸盐发生反应,使混凝土内部发生体积膨胀,破坏混凝土。冻融循环是由于混凝土吸水后,在温度变化时发生体积膨胀或收缩,最终混凝土也会遭到破坏。

混凝土用什么方法破碎速度快

4,混凝土地面怎么破碎

回答 1、一种混凝土软化破碎方法,特别涉及到利用物理、化学等原理对在建筑施工中必须去除的多余的混凝土或需要拆除的临时性混凝土构件的一种软化破碎方法。在混凝土构件凝固结硬前,将涂以药剂的插管垂直插入处以塑性状态的混凝土中,然后拔出插管,在混凝土中形成很多均布的膨胀孔,在孔中再涂另一种药剂,再经挤裂敲击,最后达到去除多余混凝土的目的。这种方法省力、省时、效果好。2、使用一般大型的破碎用带破碎钻头的挖机,小型的用空压机,微型的人工用锤和斩子来破碎混凝 麻烦给个赞谢谢!

5,混凝土凝固后用什么打碎

你好,很高兴为你解答混凝土凝固后用(大锤,洋镐)打碎满意采纳哦!
当水泥与适量的水调和时,开始形成的是一种可塑性的浆体,具有可加工性。随着时间的推移,浆体逐渐失去了可塑性,变成不能流动的紧密的状态,此后浆体的强度逐渐增加,直到最后能变成具有相当强度的石状固体。如果原先还掺有集合料如砂、石子等,水泥就会把它们胶结在一起,变成坚固的整体,即我们常说的混凝土。这整个过程我们把它叫做水泥的凝结和硬化。从物理、化学观点来看,凝结和硬化是连续进行的、不可截然分开的一个过程,凝结是硬化的基础,硬化是凝结的继续。但是在施工中为了保证施工质量,要求在水泥浆体失去其可塑性以前必须结束施工,因此人们根据需要以及水泥浆体的这个特性,人为地将这整个过程划分为凝结和硬化两个过程。凝结是指水泥浆体从可塑性变成非可塑性,并有很低的强度的过程;硬化是指浆体强度逐渐提高能抵抗外来作用力的过程。此外,对凝结过程还人为地进一步划分为初凝和终凝,用加水后开始计算的时间来表示。例如,国家标准规定:普通硅酸盐水泥初凝不得早于45min,终凝不得迟于12h。使用时施工浇灌过程的时间,必须早于45min;到终凝后,才能脱去模板开始下一个周期生产。 水泥的凝结和硬化,是一个复杂的物理—化学过程,其根本原因在于构成水泥熟料的矿物成分本身的特性。水泥熟料矿物遇水后会发生水解或水化反应而变成水化物,由这些水化物按照一定的方式靠多种引力相互搭接和联结形成水泥石的结构,导致产生强度。 普通硅酸盐水泥熟料主要是由硅酸三钙(3cao·sio2)、硅酸二钙(β-2cao·sio2)、铝酸三钙(3cao·al2o3)和铁铝酸四钙(4cao·al2o3·fe2o3)四种矿物组成的,它们的相对含量大致为:硅酸三钙37~60%,硅酸二钙15~37%,铝酸三钙7~15%,铁铝酸四钙10~18%。这四种矿物遇水后均能起水化反应,但由于它们本身矿物结构上的差异以及相应水化产物性质的不同,各矿物的水化速率和强度,也有很大的差异。按水化速率可排列成:铝酸三钙>铁铝酸四钙>硅酸三钙>硅酸二钙。按最终强度可排列成:硅酸二钙>硅酸三钙>铁铝酸四钙>铝酸三钙。而水泥的凝结时间,早期强度主要取决于铝酸三钙和硅酸三钙。现分别简述它们的水化反应。 首先,介绍铝酸三钙。它的水化反应可用下式表达。 上述铝酸三钙的水化反应如果进行得很快,会导致水泥的凝结过快而无法使用,因此,一般在粉磨水泥时都掺有适量的二水石膏作为缓凝剂,掺石膏后铝酸三钙的水化反应如下式所示。 由于这个反应就不会引起快凝。当水泥中的石膏完全作用完后,还有多余3cao·al2o3时将发生下列反应。 如果还有过量3cao·al2o3时,就会生成4cao·al2o3·13h2o。在正常缓凝的硅酸盐水泥中,石膏掺入量能保证在浆体结硬以前,不会发生后两个反应。 其次,谈一下硅酸三钙。它的水化反应可表示如下: 由于cao0.8~1.5sio2·h2o0.25与天然的托勃莫来石很相似,因而称它为托勃莫来石,通常用csh(b)来表示。 铁铝酸四钙水化反应和铝酸三钙相似,而硅酸二钙水化反应和硅酸三钙相似。 那么,这些水化产物怎样会导致水泥浆结硬并产生强度呢?水泥凝结硬化的机理究竟是什么?按结晶理论认为水泥熟料矿物水化以后生成的晶体物质相互交错,聚结在一起从而使整个物料凝结并硬化。按胶体理论认为水化后生成大量的胶体物质,这些胶体物质由于外部干燥失水,或由于内部未水化颗粒的继续水化,于是产生“内吸作用”而失水,从而使胶体硬化。随着科学技术的发展,特别是x—射线和电子显微技术的应用,将这两种理论统一起来,过去认为水化硅酸钙csh(b)是胶体无定形的,实际上它是纤维状晶体,只不过这些晶体非常细小,处在胶体大小范围内,比面积很大罢了。所以现在比较统一的认识是:水泥水化初期生成了许多胶体大小范围的晶体如csh(b)和一些大的晶体如ca(oh)2包裹在水泥颗粒表面,它们这些细小的固相质点靠极弱的物理引力使彼此在接触点处粘结起来,而连成一空间网状结构,叫做凝聚结构。由于这种结构是靠较弱的引力在接触点进行无秩序的连结在一起而形成的,所以结构的强度很低而有明显的可塑性。以后随着水化的继续进行,水泥颗粒表面不大稳定的包裹层开始破坏而水化反应加速,从饱和的溶液中就析出新的、更稳定的水化物晶体,这些晶体不断长大,依靠多种引力使彼此粘结在一起形成紧密的结构,叫做结晶结构。这种结构比凝聚结构的强度大得多。水泥浆体就是这样获得强度而硬化的。随后,水化继续进行,从溶液中析出新的晶体和水化硅酸钙凝胶不断充满在结构的空间中,水泥浆体的强度也不断得到增长。 影响水泥凝结速率和硬化强度的因素很多,除了熟料矿物本身结构,它们相对含量及水泥磨粉细度等这些内因外,还与外界条件如温度、加水量以及掺有不同量的不同种类的外加剂等外因密切相关。

文章TAG:混凝土混凝土用什么破碎  有什么东西可以把管道里的混凝土打碎  
下一篇